Precision Medicine & Health Applications

精准医疗的应用不断增长

为实现更靶向、更成功、更经济高效的治疗和护理方法而努力

应用精准医疗行动

精准医疗的应用可以帮助挽救生命、预防性地告知人们遗传风险,降低医疗费用,改善生活质量。了解未来的风险对于健康极为重要,因为在前10大死亡原因中,有9个有基因组学参与1

随着我们了解到某些暴露(环境、行为等)以及社会经济不平等是如何恶化基因组学先决条件后,我们可以采取行动改变潜在影响。将精准医疗与公共卫生和健康计划相结合的统一战略有助于减轻疾病负担,提供更好的医疗结果。

评估遗传性癌症风险

识别使个体易患癌症的突变可支持预防癌症,降低癌症发病的可能性。遗传突变在癌症风险和易感性中起着重要作用:

  • 近1.5%的人群6 和20%的晚期癌症患者7 携带致病突变
  • 群体筛查有可能将由突变造成的癌症死亡人数减少31%8
  • 风险分层的乳腺癌筛查可减少71%的过度诊断和10%的死亡,同时节约成本9
了解更多关于癌症风险
预测癌症易感性

希望之城的科学家们使用 NGS 来了解癌症的多基因性、预测遗传性癌症风险并定制精准预防。

联系我们以获得在您的机构实施精准医疗应用的帮助。
参考文献
  1. Wakap SN et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet. 2020;28(2):165-173.
  2. Tabor HK et al. Pathogenic variants for Mendelian and complex traits in exomes of 6,517 European and African Americans: implications for the return of incidental results. Am J Hum Genet. 2014; 95(2):183-93.
  3. Bush WS et al. Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network. Clin Pharmacol Ther. 2016; 100(2):160-9.
  4. The NIH U.S. National Library of Medicine. ClinicalTrials.gov. Accessed June 26, 2020.
  5. US Food & Drug Administration. Table of Pharmacogenomic Biomarkers in Drug Labeling. Fda.gov. Published February 5, 2020.
  6. Geisinger MyCode Project.geisinger.org. (Based on 2/1/2021 data with 62,434 cases analyzed for clinical review.)
  7. Mandelker D et al. Mutation Detection in Patients with Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing. JAMA. 2017;318(9):825-835.
  8. Zhang L et al. Population genomic screening of all young adults in a health-care system: a cost-effectiveness analysis. Genet Med. 2019;21(9):1958-1968.
  9. Pashayan N et al. Cost-effectiveness and Benefit-to-Harm Ratio of Risk-Stratified Screening for Breast Cancer: A Life-Table Model. JAMA Oncol. 2018; 4(11):1504-1510.
  10. Wakap SN et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet. 2020;28(2):165-173.
  11. Online Mendelian Inheritance in Man® Gene Map Statistics. omim.org. Accessed 3/1/2021.
  12. Tabor HK et al. Pathogenic variants for Mendelian and complex traits in exomes of 6,517 European and African Americans: implications for the return of incidental results. Am J Hum Genet. 2014; 95(2):183-93.
  13. Bush WS et al. Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network. Clin Pharmacol Ther. 2016; 100(2):160-9.
  14. van der Wouder CH et al. Pharmacist-Initiated Pre-Emptive Pharmacogenetic Panel Testing with Clinical Decision Support in Primary Care: Record of PGx Results and Real-World Impact. Genes. 2019;10(6):416.
  15. Fagerness J et al. Pharmacogenetic-guided psychiatric intervention associated with increased adherence and cost savings. Am J Manag Care. 2014;20(5):e146-56.
  16. Watanabe JH et al. Cost of Prescription Drug-Related Morbidity and Mortality. Ann Pharmacother. 2018;52(9):829-837.
  17. CPIC Guidelines. Cpicpgx.org. Accessed August 11, 2020.
  18. Bianchi DW, Parker RL, Wentworth J, et al; for CARE Study Group. DNA sequencing versus standard prenatal aneuploidy screening. N Engl J Med. 2014;370(9):799-808.
  19. Office of Disease Prevention and Health Promotion. Genomics. Healthypeople.gov. Accessed 3/1/2021.
  20. Centers for Disease Control and Prevention. Leading causes of Death. CDC.gov. Accessed 3/1/2021.